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results of original algorithm only. In parallel performance as-
pect, those interpolation methods are well parallelized with
high efficiency. With the proposed interpolation method, we
construct a configuration of two-million out-of-sample data
into the target dimension, and the number of out-of-sample
data can be increased further.
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1. INTRODUCTION
Due to the advancements in science and technologies for

last several decades, every scientific and technical fields gen-
erates a huge amount of data in every minute in the world.
We are really in the data deluge era. In reflection of data
deluge era, data-intensive scientific computing [12] has been
emerging in the scientific computing fields and getting more
interested by many people. To analyze those incredible
amount of data, many data mining and machine learning
algorithms have been developed. Among many data mining
and machine learning algorithms that have been invented,
we focus on dimension reduction algorithms, which reduce
data dimensionality from original high dimension to target
dimension, in this paper.

Among many dimension reduction algorithms, such as
principle component analysis (PCA), generative topographic
mapping (GTM) [3,4], self-organizing map (SOM) [16], mul-
tidimensional scaling (MDS) [5, 18], we discuss about MDS
and GTM in this paper since those are popular and theoreti-
cally strong. Previously, we parallelize those two algorithms

ABSTRACT
The recent explosion of publicly available biology gene se-
quences and chemical compounds offers an unprecedented 
opportunity for data mining. To make data analysis feasible 
for such vast volume and high-dimensional scientific data, we 
apply high performance dimension reduction algorithms. It 
facilitates the investigation of unknown structures in a three 
dimensional visualization. Among the known dimension re-
duction algorithms, we utilize the multidimensional scaling 
and generative topographic mapping algorithms to configure 
the given high-dimensional data into the target dimension. 
However, both algorithms require large physical memory as 
well as computational resources. Thus, the authors propose 
an interpolated approach to utilizing the mapping of only a 
subset of the given data. This approach effectively reduces 
computational complexity. With minor trade-off of approx-
imation, interpolation method makes it possible to process 
millions of data points with modest amounts of computation 
and memory requirement. Since huge amount of data are 
dealt, we represent how to parallelize proposed interpolation 
algorithms, as well. For the evaluation of the interpolated 
MDS by STRESS criteria, it is necessary to compute sym-
metric all pairwise computation with only subset of required 
data per process, so we also propose a simple but efficient 
parallel mechanism for the symmetric all pairwise computa-
tion when only a subset of data is available to each process. 
Our experimental results illustrate that the quality of in-
terpolated mapping results are comparable to the mapping
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to utilize multicore clusters and to increase the computa-
tional capability with minimal overhead for the purpose of
investigating large data, such as 100k data [7]. However, par-
allelization of those algorithms, whose computational com-
plexity and memory requirement is upto O(N2) where N
is the number of points, is still limited by the memory re-
quirement for huge data, e.g. millions of points, although it
utilize distributed memory environments, such as clusters,
for acquiring more memory and computational resources. In
this paper, we try to solve the memory-bound problem by
interpolation based on pre-configured mappings of the sam-
ple data for both MDS and GTM algorithms, so that we can
provide configuration of millions points in the target space.

In this paper, first we will briefly discuss about existed
methods of out-of-sample problem in various dimension re-
duction algorithms in Section 2. Then, the proposed in-
terpolation methods and how to parallelize them for MDS
and GTM algorithms are described in Section 3 and Sec-
tion 4, correspondingly. The quality comparison between
interpolated results and full MDS or GTM running results
and parallel performance evaluation of those algorithms are
shown in Section 5 followed by our conclusion and future
works in Section 6.

2. RELATED WORK
Embedding new points with respect to previously config-

ured points, or known as out-of-sample problem, has been
actively researched for recent years, aimed at extending the
capability of various dimension reduction algorithms, such as
LLE, Isomap, multidimensional scaling (MDS), generative
topographic mapping (GTM), to name a few. Among many
efforts, a recent study by S. Xiang et al. in [24] provides a
generalized out-of-sample solutions for non-linear dimension
reduction problems by using coodinate propagation. In [6],
M. Carreira-Perpiñásn and Z. Lu provides an out-of-sample
extension for the algorithms based on the latent variable
model, such as generative topographic mapping (GTM), by
adapting spectral methods used for Laplacian Eigenmaps.

In sensor network localization field, when there are only a
subset of pairwise distances between sensors and a subset of
anchor locations are available, people try to find out the lo-
cations of the remaining sensors. For instance, semi-definite
programming relaxation approaches and its extended ap-
proaches has been proposed to solve it [23]. [2] and [21]
proposed out-of-sample extension for the classical multidi-
mensional scaling (CMDS) [20], which is based on spectral
decomposition of a symmetric positive semidefinite matrix
(or the approximation of positive semidefinite matrix), and
the embeddings in the configured space are represented in
terms of eigenvalues and eigenvectors of it. [2] projected the
new point x onto the principal components, and [21] ex-
tends the CMDS algorithm itself to the out-of-sample prob-
lem. Recently, a multilevel force-based MDS algorithm was
proposed as well [14].

In contrast to applying out-of-sample problem to CMDS,
we extends out-of-sample problem to general MDS results
with STRESS criteria in Eq. (1), which finds embeddings of
approximating to the distance (or dissimilarity) rather than
the inner product as in CMDS, with an EM-like optimization
method, called iterative majorizing. The proposed iterative
majorizing interpolation approach for the MDS problem will
be explained in Section 3.1.

3. MULTIDIMENSIONAL SCALING (MDS)
Multidimensional scaling(MDS) [5, 18] is a general term

for the techniques of configuration of the given high dimen-
sional data into target dimensional space based on the pair-
wise proximity information of the data, while each Euclidean
distance between two points becomes as similar to the corre-
sponding pairwise dissimilarity as possible. In other words,
MDS is a non-linear optimization problem with respect to
mapping in the target dimension and original proximity in-
formation.

Formally, the pairwise proximity information is given as
an N × N matrix (∆ = [δij ]), where N is the number of
points and δij is the given dissimilarity value of the original
data space between point i and j. (1) Symmetric (δij = δji),
(2) non-negative (δij ≥ 0), and (3) zero diagonal (δii = 0)
are the constraints of the dissimilarity matrix ∆. By MDS
algorithm, the generated mapping could be also represented
as an N × L matrix (X), where L is the target dimension,
and each data point xi ∈ R

L (i = 1, . . . , N) resides in i-th
rows of X .

The evaluation of the constructed configuration is done
with respect to the well-known objective functions of MDS,
namely STRESS [17] or SSTRESS [19]. Below equations are
the definition of STRESS (1) and SSTRESS (2):

σ(X) =
X

i<j≤N

wij(dij(X) − δij)
2 (1)

σ2(X) =
X

i<j≤N

wij [(dij(X))2 − (δij)
2]2 (2)

where 1 ≤ i < j ≤ N and wij is a weight value, so wij ≥ 0.

3.1 Majorizing Interpolation MDS
One of the main limitation of most MDS applications

is that it requires O(N2) memory as well as O(N2) com-
putation. Thus, though it is possible to run them with
small data size without any trouble, it is impossible to ex-
ecute it with large number of data due to memory limi-
tation, so it could be considered as memory-bound prob-
lem. For instance, Scaling by MAjorizing of COmplicated
Function (SMACOF) [9,10], a well-known MDS application
via Expectation-Maximization (EM) [11] approach, uses six
N × N matrices. If N = 100, 000, then one N × N matrix
of 8-byte double-precision numbers requires 80 GB of main
memory, so the algorithm needs to acquire at least 480 GB
of memory to store six N × N matrices. It is possible to
run parallel version of SMACOF with MPI in Cluster-II
in Table 1 with N = 100, 000. If the data size is increased
only twice, however, then SMACOF algorithm should have
1.92 TB of memory, which is bigger than total memory of
Cluster-II in Table 1 (1.536 TB), so it is impossible to run
it within the cluster. Increasing memory size will not be a
solution, even though it could increase the runnable number
of points. It will encounter the same problem as the data
size increases.

To solve this obstacle, we develop a simple interpolation
approach based on pre-mapped MDS result of the sample
of the given data. Our interpolation algorithm is similar
to k nearest neighbor (k-NN) classification [8], but we ap-
proximate to new mapping position of the new point based
on the positions of k-NN, among pre-mapped subset data,
instead of classifying it. For the purpose of deciding new
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mapping position in relation to the k-NN positions, iter-
ative majorization method is used as in SMACOF [9, 10]
algorithm, with modified majorization equation, as shown
in below. The algorithm proposed in this section is called
Majorizing Interpolation MDS (MI-MDS).

The proposed algorithm is implemented as follows. We are
given N data in high-dimensional space, say D-dimension,
and proximity information (∆ = [δij ]) of those data as in
Section 3. Among N data, the configuration of the n sample
points in L-dimensional space, x1, . . . , xn ∈ R

L, called X,
are already constructed by an MDS algorithm, here we use
SMACOF algorithm. Then, we select k nearest neighbors,
p1, . . . , pk ∈ P , of the given new point among n pre-mapped
points with respect to corresponding δix, where x represents
the new point. Finally, the new mapping of the given new
point x ∈ R

L is calculated based on the pre-mapped position
of selected k-NN and corresponding proximity information
δix. The finding new mapping position is considered as a
minimization problem of STRESS (1) as similar as normal
MDS problem with m points, where m = k + 1. However,
only one point x is movable among m points, so we can
summarize STRESS (1) as belows, and we set wij = 1, for
∀i, j in order to simplify.

σ(X) =
X

i<j≤N

(dij(X) − δij)
2 (3)

= C +
k

X

i=1

d2
ix − 2

k
X

i=1

δixdix (4)

where δix is the original dissimilarity value between pi and
x, dix is the Euclidean distance in L-dimension between pi

and x, and C is constant part. The second term of Eq. (4)
can be deployed as following:

k
X

i=1

d2
ix = ‖x − p1‖

2 + · · · + ‖x − pk‖
2 (5)

= k‖x‖2 +

k
X

i=1

‖pi‖
2 − 2x

t
q (6)

where qt = (
Pk

i=1 pi1, . . . ,
Pk

i=1 piL) and pij represents j-th
element of pi. In order to establish majorizing inequality,
we apply Cauchy-Schwarz inequality to −dix of the third
term of Eq. (4). Please, refer to chapter 8 in [5] for details
of how to apply Cauchy-Schwarz inequality to −dix. Since
dix = ‖pi − x‖, −dix could have following inequality based
on Cauchy-Schwarz inequality:

−dix ≤

PL
a=1(pia − xa)(pia − za)

diz
(7)

=
(pi − x)t(pi − z)

diz
(8)

where zt = (zi, . . . , zL) and diz = ‖pi − z‖. The equality in
Eq. (7) occurs if x and z are equal. If we apply Eq. (8) to
the third term of Eq. (4), then we obtain

−
k

X

i=1

δixdix ≤ −
k

X

i=1

δix

diz
(pi − x)t(pi − z) (9)

= −x
t

k
X

i=1

δix

diz
(z − pi) + Cρ (10)

where Cρ is a constant. If Eq. (6) and Eq. (10) are applied
to Eq. (4), then it could be like following:

σ(X) = C +

k
X

i=1

d2
ix − 2

k
X

i=1

δixdix (11)

≤ C + k‖x‖2 − 2x
t
q +

k
X

i=1

‖pi‖
2

− 2x
t

k
X

i=1

δix

diz
(z − pi) + Cρ (12)

= τ (x, z) (13)

where both C and Cρ are constants. In the Eq. (13), τ (x, z),
a quadratic function of x, is a majorization function of the
STRESS. Through setting the derivative of τ (x, z) equal to
zero, we can obtain minimum of it; that is

∇τ (x, z) = 2kx − 2q − 2
k

X

i=1

δix

diz
(z − pi) = 0 (14)

x =
q +

Pk
i=1

δix

diz

(z − pi)

k
(15)

where qt = (
Pk

i=1 pi1, . . . ,
Pk

i=1 piL), pij represents j-th el-
ement of pi, and k is the number of nearest neighbor we
selected.

The advantage of the iterative majorization algorithm is
that it produces a series of mapping with non-increasing
STRESS value as proceeds, which results in local minima.
It is good enough to find local minima, since the proposed MI
algorithm simplifies the complicated non-linear optimization
problem as a small non-linear optimization problem, such as
k+1 points non-linear optimization problem, where k ≪ N .
Finally, if we substitute z with x[t−1] in Eq. (15), then we
generate an iterative majorizing equation like following:

x
[t] =

q +
Pk

i=1
δix

diz

(x[t−1] − pi)

k
(16)

x
[t] = p +

1

k

k
X

i=1

δix

diz
(x[t−1] − pi) (17)

where diz = ‖pi − x[t−1]‖ and p is the average of k-NN’s
mapping results. Eq. (17) is an iterative equation used
to embed newly added point into target-dimensional space,
based on pre-mapped positions of k-NN. The iteration stop
condition is essentially same as that of SMACOF algorithm,
which is

∆σ(S[t]) = σ(S[t−1]) − σ(S[t]) < ε, (18)

where S = P ∪ {x} and ε is the given threshold value.
Process of the out-of-sample MDS could be summarized

as following steps: (1) Sampling, (2) Running MDS with
sample data, and (3) Interpolating the remain data points
based on the mapping results of the sample data.

The summary of proposed MI algorithm for interpolation
of a new data, say x, in relation to pre-mapping result of the
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Algorithm 1 Majorizing Interpolation (MI) algorithm

1: Find k-NN: find k nearest neighbors of x, pi ∈ P

i = 1, . . . , k of the given new data based on original
dissimilarity δix.

2: Gather mapping results in target dimension of the k-NN.
3: Calculate p, the average of pre-mapped results of pi ∈

P .
4: Generate initial mapping of x, called x[0], either p or a

random point.
5: Compute σ(S[0]), where S[0] = P ∪ {x[0]}.

6: while t = 0 or (∆σ(S[t]) > ε and t ≤ MAX ITER) do
7: increase t by one.
8: Compute x[t] by Eq. (17).

9: Compute σ(S[t]).
10: end while

11: return x[t];

sample data is described in Alg. 1. Note that the algorithm
uses p as an initial mapping of the new point x[0] unless
initialization with p makes dix = 0, since the mapping is
based on the k-NN. If p makes dix = 0 (i = 1, . . . , k), then
we use a random generated point as an initial position of
x[0].

3.2 Parallel MI-MDS Algorithm
Suppose that, among N points, mapping results of n sam-

ple points in the target dimension, say L-dimension, are
given so that we could use those pre-mapped results of n
points via MI-MDS algorithm which is described above to
embed the remaining points (M = N − n). Though in-
terpolation approach is much faster than full running MDS
algorithm, i.e. O(Mn+n2) vs. O(N2), implementing paral-
lel MI algorithm is essential, since M can be still huge, like
millions. In addition, most of clusters are now in forms
of multicore-clusters after multicore-chip invented, so we
are using hybrid-model parallelism, which combine processes
and threads together.

In contrast to the original MDS algorithm that the map-
ping of a point is influenced by the other points, interpolated
points are totally independent one another, except selected
k-NN in the MI-MDS algorithm, and the independency of
among interpolated points makes the MI-MDS algorithm
to be pleasingly-parallel. In other words, there must be
minimum communication overhead and load-balance can be
achieved by using modular calculation to assign interpolated
points to each parallel unit, either between processes or be-
tween threads, as the number of assigned points are different
at most one each other.

3.3 Parallel Pairwise Computation with Sub-
set of Data

Although interpolation approach itself is in O(Mn), if we
want to evaluate the quality of the interpolated results by
STRESS criteria in Eq. (1) of overall N points, it requires
O(N2) computation. Note that we implement our hybrid-
parallel MI-MDS algorithm as each process has access to
only a subset of M interpolated points, without loss of gen-
erality M/p points, as well as the information of all pre-
mapped n points. It is natural way of using distributed-
memory system, such as cluster systems, to access only sub-

p1

p5

p4

p3

p2

p5p4p3p2p1

p1

p2

p3

p4

p5p1

p2

p3

p4

p5

Figure 1: Message passing pattern and paral-
lel symmetric pairwise computation for calculating
STRESS value of whole mapping results.

set of huge data which spread to over the clusters, so that
each process needs to communicate each other for the pur-
pose of accessing all necessary data to compute STRESS.

In this section, we illustrate how to calculate symmet-
ric pairwise computation in parallel efficiently with the case
that only subset of data is available for each process. In
fact, general MDS algorithm utilize pairwise dissimilarity
information, but suppose we are given N original vectors
in D-dimension, yi, . . . , yN ∈ Y and yi ∈ R

D, instead of
given dissimilarity matrix, as PubChem finger print data
that we used for our experiments. Thus, In order to calcu-
late δij = ‖yi − yj‖ in Eq. (1), it is necessary to communi-
cate messages between each process to get required original
vector, say yi and yj . Here, we used the proposed pair-
wise computation to measure STRESS criteria in Eq. (1),
but the proposed parallel pairwise computation will be used
for general parallel pairwise computation whose computing
components are independent, such as generating distance
(or dissimilarity) matrix of all data, in condition that each
process can access only a subset of required data.

Fig. 1 describes the proposed scheme when the number of
processes (p) is 5, odd numbers. The proposed scheme is an
iterative two-step approach, rolling and computing, and the
iteration number is ⌈(1+ · · ·+p−1)/p⌉ = ⌈(p−1)/2⌉. Note
that iteration ZERO is calculating the upper triangular part
of the corresponding diagonal block, which does not requires
message passing. After iteration ZERO is done, each process
pi sends the originally assigned data block to the previous
process pi−1 and receives a data block from the next pro-
cess pi+1 in cyclic way. For instance, process p0 sends its
own block to process pp−1, and receives a block from pro-
cess p1. This rolling message passing can be done using one
single MPI primitive per process, MPI_SENDRECV(), which is
efficient. After sending and receiving messages, each pro-
cess performs currently available pairwise computing block
with respect to receiving data and originally assigned block.

206



Algorithm 2 Parallel Pairwise Computation

1: input: Y = a subset of data;
2: input: p = the number of process;
3: rank ⇐ the rank of process;
4: sendTo ⇐ (rank − 1) mod p
5: recvFrom ⇐ (rank + 1) mod p
6: k ⇐ 0;
7: Compute upper triangle in the diagonal blocks in Fig. 1;
8: MAX ITER ⇐ ⌈(p − 1)/2⌉

9: while k < MAX ITER do
10: k ⇐ k + 1;
11: if k = 1 then
12: MPI_SENDRECV(Y , sendTo, Y r, recvFrom);
13: else
14: Y s ⇐ Y r;
15: MPI_SENDRECV(Y s, sendTo,Y r, recvFrom);
16: end if

17: Do Computation();
18: end while

In Fig. 1, black solid arrows represent each message pass-
ings at iteration 1, and orange blocks with process ID are
the calculated blocks by the corresponding named process
at iteration 1. From iteration 2 to iteration ⌈(p− 1)/2⌉, the
above two-steps are done repeatedly and the only difference
is nothing but sending received data block instead of the
originally assigned data block. The green blocks and dotted
blue arrows show the iteration 2 which is the last iteration
for the case of p = 5.

Also, for the case that the number of processes is even,
the above two-step scheme works in high efficiency. The
only difference between odd number case and even number
case is that two processes are assigned to one block at the
last iteration of even number case, but not in odd number
case. Though two processes are assigned to single block, it
is easy to achieve load balance by dividing two section of
the block and assign them to each process. Therefore, both
odd number processes and even number processes cases are
parallelized well using the above rolling-computing scheme,
with minimal message passing overhead. The summary of
the above parallel pairwise computation is shown in Alg. 2.

4. GENERATIVE TOPOGRAPHIC MAPPING
The Generative Topographic Mapping (GTM) algorithm

has been developed to find an optimal representation of
high-dimensional data in the low-dimensional space, or also
known as latent space. Unlike the well-known PCA-based
dimension reduction which finds linear embeddings in the
target space, the GTM algorithm seeks a non-linear map-
pings in order to provide more improved separations than
PCA [4]. Also, in contrast to Self-Organized Map (SOM)
which finds lower dimensional representations in a heuristic
approach with no explicit density model for data, the GTM
algorithm finds a specific probability density based on Gaus-
sian noise model. For this reason, GTM is often called as a
principled alternative to SOM [3].

In GTM algorithm, one seeks a non-linear mapping of
user-defined K points {zi}

K
i=1 in the latent space to the orig-

inal data space for N data points in a way K data points
can optimally represent N data points {xj}

N
j=1 in the high-

dimensional space. More specifically, the GTM algorithm
finds a non-linear mapping f(zi; W ) with a weight parame-
ter set W and a coefficient β which maximize the following
log-likelihood:

L(W , β) =

N
X

j=1

ln

(

1

K

K
X

i=1

N (xj |f(zi; W ), β)

)

, (19)

where N (a|b, β) represents Gaussian probability for a cen-
tered on b with variance β−1 (known as precision).

This problem is a variant of well-known K-clustering prob-
lem which is NP-hard [1]. To solve the probem, GTM algo-
rithm uses Expectation-Maximized (EM) method to find a
local optimal solution. Since the details of GTM algorithm
is out of this paper’s scope, we recommend readers to refer
to the original GTM papers [3,4] for more details.

Once found an optimal parameter set in the GTM algo-
rithm, we can draw a GTM map (also known as posterior
mean projection plot) for N data points in the latent space
by using the following equation:

〈xj〉 =
K

X

i=1

rijzi (20)

where rij is the posterior probabilities, called responsibili-
ties, defined by

rij =
N (xj |yi, β)

PK
i′=1 N (xj |yi′ , β)

(21)

for yi = f(zi; W )

4.1 GTM Interpolation
The core of GTM algorithm is to find the best K rep-

resentations for N data points, which makes the problem
complexity is O(KN). Since in general K ≪ N , the prob-
lem is sub O(N2) which is the case of the MDS problem.
However, for large N the computations in GTM algorithm
is still challenging. For example, to draw a GTM map for
0.1 million 166-dimensional data points in a 20x20x20 latent
grid space, in our rough estimation it took about 30 hours
by using 64 cores.

To reduce such computational burden, we can use inter-
polation approach in GTM algorithm, in which one can find
the best K representations from a portion of N data points,
known as samples, instead of processing full N data points
and continue to process remaining or out-of-sample data by
using the information learned from previous samples. Typi-
cally, since the latter (interpolation process) doesn’t involve
computationally expensive learning processes, one can re-
duce overall execution time compared to the time spent for
the full data processing approach.

Although many researches have been performed to solve
various non-linear manifold embeddings, including GTM al-
gorithm, with this out-of-sample approach, we have chosen
a simple approach since it works well for our dataset used
in this paper. For more sophisticated and complexed data,
one can see [6,15,24].

With a simple interpolation approach, we can perform the
GTM process as follows:

1. Sampling – randomly select a sample set S = {sk}
N′

k=1

of size N ′ from the full dataset {xj}
N
j=1 of size N ,

where sk, xj ∈ R
D.
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Figure 2: An example of decomposition in GTM
interpolation for computing responsibility matrix R
in parallel by using a 2x3 virtual processor grid.

2. GTM process – perform GTM algorithm and find an
optimal K cluster center {yi}

K
i=1 and a coefficient β for

the sample set S. Let Y ∈ R
K×D denote the matrix

representation of K centers, where i-th row contains
yi ∈ R

D.

3. Compute responsibility – for the remaining dataset
{tn}

M
n=1 of size M = N − N ′, denoted by T , compute

a K × M pairwise distance matrix D where (i, j)-th
element dij is a Gaussian probability between tj and
yi with variance β−1, which was learned from the sam-
ples, such as dij = N (tj |yi, β). Compute a responsi-
bility matrix R by , as follows:

R = D ⊘ (ee
t
D) (22)

where a vector e = (1, ..., 1)t ∈ R
K and ⊘ represents

element-wise division.

4. Interpolated map – by using Eq. (20), an interpo-
lated GTM map Z̄, known as posterior mean plot, can
be computed by the following equation:

Z̄ = R
t
Z (23)

where Z denotes the matrix represents of the latent
points {zk}

K
k=1.

In the GTM interpolation, computing responsibility ma-
trix R (step 3) is the most time and memory consuming step.
This step can be parallelized by decomposing the problem
into P-by-Q sub blocks such that total PQ processes can
concurrently process each block which approximately holds
1/PQ elements of R. This is the same method used in par-
allel GTM implementation discussed in [7]. More detailed
algorithm and analysis will be discussed in Section 4.2

4.2 Parallel GTM Interpolation
The core of parallel GTM interpolation is how to paral-

lelize the computations for the responsibility matrix R as
in (22) since its computation is the most time and memory
consuming task. This can be done by the same approach for
the general parallel matrix multiplication methods known as
Fox algorithm [13] and SUMMA [22] but with extra tasks.

Assuming that we have P ×Q virtual compute grids with
total p = PQ processes, we can decompose the responsibility
matrix R into P × Q sub blocks so that (u, v)-th sub block
of R, denoted by Ruv for u = 1, ..., P and v = 1, ..., Q, can
be computed by one process. For this computation, we also
need to decompose the matrix Y for K cluster centers into
P sub blocks such that each block contains approximately

K/P cluster centers and divide the M out-of-sample data
T into Q sub blocks that one block contains approximately
M/Q out-of-sample data. Then, we can compute (i, n)-th
sub block of R as follows:

Ruv = resp(Y u, T v) (24)

where resp(·, ·) is a function for computing responsibility and
Y u and T v are inputs, denoted by u-th and v-th sub block
of Y and T respectively.

A sketch of parallel GTM interpolation is as follows:

1. Broadcast sub-block {Y u}
P
u=1 and {Zu}

P
u=1 to P rank-

one node in rows and {T v}
Q
v=1 to each rank-one node

in columns of the P × Q grid respectively.

2. The rank-one node broadcast sub-block {Y u}
P
u=1 and

{Zu}
P
u=1 to row members and {T v}

Q
v=1 to its column

members respectively.

3. (u, v)-th node computes sub distance matrix Duv by
using Y u and T v.

4. Collect P vectors {du}
P
u=1 contains column sum of

Duv from column members and compute Ruv by

Ruv = Duv ⊘ e
P

X

u

(du)t (25)

where a vector e = (1, ..., 1)t ∈ RK/P and ⊘ represents
element-wise division.

5. (u, v)-th node computes the following sub block for the
posterior mean Z̄uv

Z̄uv = (Ruv)t
Zuv (26)

and send to the rank-one node in columns. Then, v-th
sub block of GTM map Z̃ for N/Q data points is

Z̃v =

P
X

u

Z̄uv (27)

In our parallel GTM interpolation algorithm, main com-
putation time is spent in computing K/P × N/Q distance
matrix Duv which requires approximately O(KN/PQ)τC

computation time, where τC represents a unit time for ba-
sic operations such as multiplication and summation. Re-
garding the time spent for communication, our algorithm
consumes time due to the network bandwidth, denote τB,
which increases as the size of data to send and receive. As-
suming a minimum spanning tree broadcasting and collect-
ing operations, our algorithm will spend O(log P (KD/Q +
N/Q + KN/PQ) + log P (KD/P + KL/P ))τB . Also, as we
increase P or Q, an overhead can occur due to the network
latency, denote τL, which mainly occurs due to the number
of communications. In our parallel GTM interpolation, we
have O(2P + Q) communications. Since generally L ≪ D
and those are constant, we can formulate the total comput-
ing time T (K,N, P, Q) in our algorithm, with respect to K
latent points, N data points, and P×Q processes, as follows:

O

„

KN

PQ

«

τC + O(2P + Q)τL

+O

„

log P

„

N

Q
+

KN

PQ

«

+ log Q

„

KD

P

««

τB (28)
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where τC , τB, and τL represents unit time for computation,
network bandwidth, and network latency respectively.

Since the running time with no parallelization T1 = O(KN),
we can expect the speed up as S(K, N, P, Q) = T1/T (K, N, P, Q)
and its corresponding efficiency E(K, N, P, Q) = S(K, N, P, Q)/PQ
as follows.



1 + O

„

log P

KPQ2
+

log P

P 2Q2
+

log Q

NP 2Q

«

τB

+O

„

2P + Q

PQ

«

τL

ff−1

(29)

The above equation implies the following: in the case
where P and Q are large enough but network latency due
to τL is negligibly small, we can achieve an ideal efficiency
E(K, N, P, Q) = 1. However, as we increase the number of
cores, the efficiency of our algorithm will be hurt by the in-
crease number of communications. Our experiment results
support this expectation.

5. ANALYSIS OF EXPERIMENTAL RESULTS
To measure the quality and parallel performance of our

MDS and GTM with interpolation approach discussed in
this paper, we have used 166-dimensional chemical dataset
obtained from PubChem project database1, which is a NIH-
funded repository for over 60 million chemical molecules and
provides their chemical structures and biological activities,
for the purpose of chemical information mining and explo-
ration. In this paper we have used randomly selected up to
2 million chemical subsets for our testing. The computing
clusters we have used in our experiments are summarized in
Table 1.

In the following, we will mainly show i) the quality of our
interpolation approaches in performing MDS and GTM algo-
rithms, with respect to various sample sizes – 12.5k, 25k, and
50k randomly selected from 100k dataset as a basis, and ii)
performance measurement of our parallelized interpolation
algorithms on our clustering systems as listed in Table 1, and
finally, iii) our results on processing up to 2 million MDS and
GTM maps based on the trained result from 100K dataset.

5.1 Mapping Quality Comparison

5.1.1 MDS vs. MI-MDS
Generally, the quality of k-NN (k-nearest neighbor) clas-

sification (or regression) is related to the number of neigh-
bors. For instance, if we choose larger number for the k,
then the algorithm shows higher bias but lower variance.
On the other hands, the k-NN algorithm shows lower bias
but higher variance based on smaller number of neighbors.
The purpose of the MI algorithm is to find appropriate em-
beddings for the new points based on the given mappings of
the sample data, so it is better to be sensitive to the map-
pings of the k-NN of the new point than to be stable with
respect to the mappings of whole sample points. Thus, in
this paper, the authors use 2-NN for the MI algorithm.

Fig. 3 shows the comparison of quality between interpo-
lated results of 100K data with different sample data size
by using 2-NN and MDS (SMACOF) only result with 100k
pubchem data. The y-axis of the plot is STRESS (1) nor-
malized with

P

i<j δ2
ij , and the difference between MDS only

1PubChem,http://pubchem.ncbi.nlm.nih.gov/

Sample size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

2e+04 4e+04 6e+04 8e+04 1e+05

Algorithm

MDS

INTP

Figure 3: Quality comparison between Interpolated
result of 100k with respect to the different sample
size (INTP) and 100k MDS result (MDS)
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Figure 4: Elapsed time of parallel MI-MDS running
time of 100k data with respect to the sample size
using 16 nodes of the Cluster-II in Table 1. Note
that the computational time complexity of MI-MDS
is O(Mn) where n is the sample size and M = N − n.

results and interpolated with 50k is only around 0.004. Even
with small portion of sample data (12.5k data is only 1/8
of 100k), the proposed MI algorithm produces good enough
mapping in target dimension using very smaller amount of
time than when we run MDS with full 100k data. Fig. 4
shows the MI-MDS running time with respect to the sample
data using 16 nodes of the Cluster-II in Table 1. Note that
the full MDS running time with 100k using 16 nodes of the
Cluster-II in Table 1 is around 27006 sec.
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Table 1: Compute cluster systems used for the performance analysis
Features Cluster-I Cluster-II

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

# CPU / # Cores per node 4 / 16 4 / 24

Total Cores 128 768

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition (Ser-
vice Pack 2) - 64 bit

Windows Server 2008 HPC Edition (Ser-
vice Pack 2) - 64 bit

Above we discussed about the MI-MDS quality of the fixed
total number (100k) and with respect to the different sam-
ple data size, compared to MDS running result with total
number of data (100k). Now, the opposite direction of test,
which tests scalability of the proposed interpolation algo-
rithm, is performed as following: we fix the sample data size
to 100k, and the interpolated data size is increased from
one millions (1M) to two millions (2M). Then, the STRESS
value is measured for each running result of total data, i.e.
1M + 100k and 2M + 100k. The measured STRESS value
is shown in Fig. 5. There are some quality lost between the
full MDS running result with 100k data and the 1M inter-
polated results based on that 100k mapping, which is about
0.007 difference in normalized STRESS criteria. However,
there is no much difference between the 1M interpolated re-
sult and 2M interpolated result, although the sample size is
quite small portion of total data and the out-of-sample data
size increases as twice. From the above result, we could con-
sider that the proposed MI-MDS algorithm works well and
scalable if we are given a good enough pre-configured result
which represents well the structure of the given data. Note
that it is not possible to run SMACOF algorithm with only
200k data points due to memory bound, within the systems
in Table 1.

5.1.2 GTM vs. Interpolated-GTM
To measure the quality of GTM interpolation algorithm,

we have compared quality of GTM maps, generated by us-
ing the full GTM processing with no interpolation (hereafter
GTM for short) versus maps by using the interpolation ap-
proach (hereafter INTP for short) with various sample sizes
(12.5k, 25k, and 50k) in terms of maximum log-likelihood
(a large maximum log-likelihood implies better quality of
map), as defined in (19). Our test result is shown in Fig. 6
where negative log-likelihood values are plotted for each test
case and thus points in lower area represent the better qual-
ity. Our results show that the interpolation approach has
produced almost the same quality of maps with the map
generated by using the full dataset. Also the result shows
that the interpolation with small sample size (12.5k) is the
worst performance case, while others’ results are quite close
to the the full data processing case. This is the common
case in which small samples can lead skewed interpretation
of the full data.

Next, we compare GTM versus INTP (GTM with inter-
polation) in terms of processing time. For this purpose, we
processed up to 100k dataset with various sample sizes start-
ing from 12.5k up to 50k and compare the processing time
with the case of no use of interpolation (full 100k dataset).
Since the original GTM algorithm uses EM method in which
a local solution is found in an iterative fashion and the num-
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Figure 5: STRESS value change of Interpolation
larger data, such as 1M and 2M data points, with
100k sample data. The initial STRESS value of MDS
result of 100k data is 0.0719.

ber of iterations is unpredictable, we have measured aver-
age number of iterations for processing for the 100k dataset
and use this average to project GTM running time for pro-
cessing 12.5k, 25k, and 50k dataset. By adding interpola-
tion running time as we measured in the previous experi-
ment, we have projected the total running time for using
GTM interpolation with various sampling sizes as shown
in Fig. 7. As we expected, since the interpolation process
has no computing-intensive training processes, the process-
ing time is very short, compared with the approach of using
full dataset.

By combining the results shown in Fig. 6 and Fig. 7, we
show that GTM interpolation can be used to produce the
same quality of GTM maps with much less computing time.

5.2 Parallel Performance

5.2.1 Parallel MI-MDS
In the above section, we discussed about the quality of

constructed configuration of MI-MDS based on the STRESS
value of the interpolated configuration. Here, we would like
to investigate the MPI communication overhead and parallel
performance of the proposed parallel MI-MDS implementa-
tion in terms of efficiency with respect to the running results
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Figure 6: Comparison of maximum log-likelihood
from GTM with full-dataset processing without in-
terpolation (GTM) and the GTM with interpola-
tion approach (INTP) with various sampling sizes –
12.5k, 25k, and 50k – for 100k PubChem dataset.
As the sample size increases, INTP finds very close
results with GTM.
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Figure 7: Processing time for GTM interpolation
with various sample sizes (12.5k, 25k, and 50k) for
100k PubChem dataset. Elapsed time for 12.5k sam-
ples (meaning that we have process 87.5k dataset for
interpolation based on 12.5k random samples from
the full 100k dataset) is the largest, while 50k sam-
ples takes least time. The running time is very small
compared with the time for full 100k GTM process-
ing, which generally takes a few hours.

within Cluster-I and Cluster-II in Table 1.
First of all, we prefer to investigate the parallel overhead,

specially MPI communication overhead which could be ma-
jor parallel overhead for the parallel MI-MDS in Section 3.2.
Parallel MI-MDS consists of two different computations, MI
part and STRESS calculation part. MI part is pleasingly
parallel and its computational complexity is O(M), where
M = N −n, if the sample size n is considered as a constant.
Since the MI part uses only two MPI primitives, MPI_GATHER
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Figure 8: Parallel overhead modeled as due to MPI
communication in terms of sample data size (m) us-
ing Cluster-I in Table 1 and message passing over-
head model.

and MPI_BROADCAST, at the end of interpolation to gather all
the interpolated mapping results and spread out the com-
bined interpolated mapping result to all the processes for
the further computation. Thus, the communicated message
amount through MPI primitives is O(M), so it is not depen-
dent on the number of processes but the number of whole
out-of-sample points.

For the STRESS calculation part, that applied to the pro-
posed symmetric pairwise computation in Section 3.3, each
process uses MPI_SENDRECV k times to send assigned block
or rolled block, whose size is M/p, where k = ⌈(p − 1)/2⌉
for communicating required data and MPI_REDUCE twice for
calculating

P

i<j(dij − δij)
2 and

P

i<j δ2
ij . Thus, the MPI

communicated data size is O(M/p × p) = O(M) without
regard to the number of processes.

The MPI overhead during MI part and STRESS calculat-
ing part at Cluster-I and Cluster-II in Table 1 are shown
in Fig. 8 and Fig. 9, correspondingly. Note that the x-axis
of both figures is the sample size (n) but not M = N −n. In
the figures, the model is generated as O(M) starting with
the smallest sample size, here 12.5k. Both Fig. 8 and Fig. 9
show that the actual overhead measurement follows the MPI
communication overhead model.

Fig. 10 and Fig. 11 illustrate the efficiency of Interpola-
tion part and STRESS calculation part of the parallel MI-
MDS running results with different sample size - 12.5k, 25k,
and 50k - with respect to the number of parallel units using
Cluster-I and Cluster-II, correspondingly. Equations for the
efficiency is following:

f =
pT (p) − T (1)

T (1)
(30)

ε =
1

1 + f
(31)

where p is the number of parallel units, T (p) is the running
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Figure 9: Parallel overhead modeled as due to MPI
communication in terms of sample data size (m) us-
ing Cluster-II in Table 1 and message passing over-
head model.

time with p parallel units, and T (1) is the sequential running
time. In practice, Eq. (30) can be replaced with following:

f =
αT (p1) − T (p2)

T (p2)
(32)

where α = p1/p2 and p2 is the smallest number of used cores
for the experiment, so alpha ≥ 1. We use Eq. (32) for the
overhead calculation.

In Fig. 10, 16 to 128 cores are used to measure parallel
performance with 8 processes, and 32 to 384 cores are used
to evaluate the parallel performance of the proposed parallel
MI-MDS with 16 processes in Fig. 11. Processes communi-
cate via MPI primitives and each process is also parallelized
in thread level. Both Fig. 10 and Fig. 11 show very good
efficiency with appropriate degree of parallelism. Since both
MI part and STRESS calcualtion part are pleasingly paral-
lel within a process, the major overhead portion is the MPI
message communicating overhead unless load balance is not
achieved in thread-level parallelization within each process.
In the previous paragraphs, the MPI communicating over-
head is investigated and the MPI communicating overhead
shows O(M) relation. Thus, the MPI overhead is constant if
we examine with the same number of process and the same
out-of-sample data size. Since the parallel computation time
is decreased as more cores are used, but the overhead time is
constant, it lowers the efficiency as the number of cores is in-
creased, as we expected. Note that the number of processes
which lowers the efficiency dramatically is different between
the Cluster-I and Cluster-II. The reason is that the MPI
overhead time of Cluster-I is bigger than that of Cluster-II
due to different network environment, i.e. Giga bit ethernet
and 20Gbps Infiniband. The difference is easily found by
comparing Fig. 8 and Fig. 9.

5.2.2 Parallel GTM Interpolation
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Figure 10: Efficiency of Interpolation part (INTP)
and STRESS evaluation part (STR) runtime in par-
allel MI-MDS application with respect to different
sample data size using Cluster-I in Table 1. Total
data size is 100K.
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Figure 11: Efficiency of Interpolation part (INTP)
and STRESS evaluation part (STR) runtime in par-
allel MI-MDS application with respect to different
sample data size using Cluster-II in Table 1. Total
data size is 100K.

We have measured performance of our parallel GTM in-
terpolation algorithm discussed in 4.2 by using 16 nodes of
the Cluster-II shown in Table 1, as we increase the number
of cores from 16 to 256.

As shown in (29), the ideal efficiency of our parallel GTM
interpolation algorithm is a constant 1.0 with respect to the
number of PQ processes and can be degraded due to the net-
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Figure 12: Efficiency of parallel GTM interpolation
with respect to various sample sizes (12.5k, 25k, and
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work latency which is mainly caused by the high number of
communications. As we increase the number of cores (more
decompositions), the communications between sub blocks
are increasing and thus the network latency can affect the
efficiencies.

As we expected, our experiment results shown in Fig. 12,
the efficiency of our parallel GTM interpolation is close to
1 as we using the small number of cores but degraded as we
have increased the number of processes(cores) for all data
sizes (12.5k, 25k, and 50k) we used in our experiments. Also
note that the efficiency for 12.5k dataset (meaning that, we
have process 87.5k dataset for interpolation based on 12.5k
random samples from the full 100k dataset and thus largest
payload size in our test) is slightly better than one’s from
50k dataset (meaning that, 50k data processed based on 50k
samples of 100k dataset and thus smallest data size), as we
increase the number of cores. This is also due to the network
latency by which small data size is affected more.

With our parallel interpolation algorithms for MDS and
GTM, we have also processed the large volume of Pub-
Chem data by using our Cluster-II and the results are shown
in Fig. 13 and Fig. 14. We performed parallel MDS and
GTM interpolation to process 100 thousands and 2 million
dataset by using 100k PubChem data set as a training set.
The interpolated points are colored in blue, while the train-
ing points are in red. As one can see, our interpolation algo-
rithms have produced a map closed to the training dataset.

6. CONCLUSION AND FUTURE WORK
We have proposed and tested interpolation algorithms for

extending MDS and GTM dimension reduction approaches
to very large datasets. We have shown that our interpolation
approach gives results of good quality with high parallel per-
formance. In quality comparison, the experimental results
shows that the interpolation approach output is comparable
to the normal MDS output which takes much more running

time than interpolation. Furthermore, the interpolation ap-
proach enables us to visualize 2 million Pubchem data points
in this paper and the size can be extended further with mod-
erate running time. Future research includes application of
these ideas to different areas including metagenomics and
other DNA sequence visualization. We will research more
detailed parallel performance for basic MDS and GTM al-
gorithms in both traditional and deterministically annealed
variations.
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